GENERALIZED M^2-FACTOR OF HARD-EDGED DIFFRACTED HYPERGEOMETRIC-GAUSSIAN TYPE-II BEAMS

A.A.A. Ebrahim, F. Khannous, H. Nebdi, A. Chafiq, A. Belafhal*
Laboratoire de Physique Nucléaire, Atomique et Moléculaire
Département de Physique, Faculté des Sciences, Université Chouaib Doukkali,
B. P.: 20, 24000 El Jadida, Morocco
* Corresponding author: E-mail: belafhal@gmail.com
Received: 06 February 2013; revised version accepted: 20 May 2014

Abstract
Based on the truncated second-order moments definition, the generalized M^2-factor of the hypergeometric-Gaussian type-II beams in the cylindrical coordinate system through a hard-edged circular aperture is derived. The effects of the beam truncation parameter δ and the beam orders on the beam propagation factor have been investigated. The theoretical results show that the generalized M^2-factor can be simplified to four special cases, among of them, the truncated and untruncated Gaussian beams. The power fraction of the hypergeometric-Gaussian type-II beams is calculated analytically and illustrated numerically.

Keywords: Generalized M^2-factor; Hard-edged; Hypergeometric-Gaussian type-II beams; Power fraction.